本文解决了开发一种用于垂直起飞和降落(VTOL)无人驾驶飞机(UAV)自动船舶登陆算法的问题,仅使用无人机中的单眼相机进行跟踪和本地化。船舶着陆是一项具有挑战性的任务,这是由于较小的着陆空间,六个自由度船甲板运动,定位的视觉参考有限以及诸如风阵等的对抗环境条件。我们首先开发了一种计算机视觉算法,该算法估计了使用无人机上的单眼视觉摄像头的图像流在着陆平台上在降落平台上的地平线参考栏的相对位置。我们的方法是由实际的船舶着陆程序动机,然后是海军直升机飞行员在跟踪视觉提示的地平线参考栏时的动机。然后,我们开发了一种强大的增强学习(RL)算法,即使在存在诸如风阵的对抗环境条件的情况下,也可以控制无人机朝着着陆平台。我们证明了与基准非线性PID控制方法相比,我们的算法的性能优越自由(DOF)甲板运动。
translated by 谷歌翻译
该论文讨论了一种基于智能视觉的控制解决方案,用于自主跟踪和降落垂直起飞和降落(VTOL)在船上具有无人驾驶飞机(UAV)的无人使用,而无需使用GPS信号。中心想法涉及自动化海军直升机船着陆程序,该程序将飞行员利用该船作为远程跟踪的视觉参考;但是,是指大多数称为“地平线棒”的海军船上安装的标准化视觉提示,以进行最终进近和着陆阶段。该想法是使用与机器视觉集成的独特设计的非线性控制器实现的。视觉系统利用基于机器学习的对象检测来进行远程船舶跟踪和经典的计算机视觉,以在最终进近和着陆阶段使用地平线估算飞机相对位置和方向。非线性控制器根据视觉系统估计的信息运行,即使在存在不确定性的情况下,也证明了强大的跟踪性能。开发的自动船舶着陆系统是在配备了板载摄像头的四轮摩托车无人机上实施的,在移动的甲板上成功证明了进近和着陆,该甲板模仿了现实的船甲板运动。进行了广泛的模拟和飞行测试,以证明垂直着陆安全性,跟踪能力和着陆精度。
translated by 谷歌翻译
Efforts to improve the adversarial robustness of convolutional neural networks have primarily focused on developing more effective adversarial training methods. In contrast, little attention was devoted to analyzing the role of architectural elements (such as topology, depth, and width) on adversarial robustness. This paper seeks to bridge this gap and present a holistic study on the impact of architectural design on adversarial robustness. We focus on residual networks and consider architecture design at the block level, i.e., topology, kernel size, activation, and normalization, as well as at the network scaling level, i.e., depth and width of each block in the network. In both cases, we first derive insights through systematic ablative experiments. Then we design a robust residual block, dubbed RobustResBlock, and a compound scaling rule, dubbed RobustScaling, to distribute depth and width at the desired FLOP count. Finally, we combine RobustResBlock and RobustScaling and present a portfolio of adversarially robust residual networks, RobustResNets, spanning a broad spectrum of model capacities. Experimental validation across multiple datasets and adversarial attacks demonstrate that RobustResNets consistently outperform both the standard WRNs and other existing robust architectures, achieving state-of-the-art AutoAttack robust accuracy of 61.1% without additional data and 63.7% with 500K external data while being $2\times$ more compact in terms of parameters. Code is available at \url{ https://github.com/zhichao-lu/robust-residual-network}
translated by 谷歌翻译
The adversarial input generation problem has become central in establishing the robustness and trustworthiness of deep neural nets, especially when they are used in safety-critical application domains such as autonomous vehicles and precision medicine. This is also practically challenging for multiple reasons-scalability is a common issue owing to large-sized networks, and the generated adversarial inputs often lack important qualities such as naturalness and output-impartiality. We relate this problem to the task of patching neural nets, i.e. applying small changes in some of the network$'$s weights so that the modified net satisfies a given property. Intuitively, a patch can be used to produce an adversarial input because the effect of changing the weights can also be brought about by changing the inputs instead. This work presents a novel technique to patch neural networks and an innovative approach of using it to produce perturbations of inputs which are adversarial for the original net. We note that the proposed solution is significantly more effective than the prior state-of-the-art techniques.
translated by 谷歌翻译
Household environments are visually diverse. Embodied agents performing Vision-and-Language Navigation (VLN) in the wild must be able to handle this diversity, while also following arbitrary language instructions. Recently, Vision-Language models like CLIP have shown great performance on the task of zero-shot object recognition. In this work, we ask if these models are also capable of zero-shot language grounding. In particular, we utilize CLIP to tackle the novel problem of zero-shot VLN using natural language referring expressions that describe target objects, in contrast to past work that used simple language templates describing object classes. We examine CLIP's capability in making sequential navigational decisions without any dataset-specific finetuning, and study how it influences the path that an agent takes. Our results on the coarse-grained instruction following task of REVERIE demonstrate the navigational capability of CLIP, surpassing the supervised baseline in terms of both success rate (SR) and success weighted by path length (SPL). More importantly, we quantitatively show that our CLIP-based zero-shot approach generalizes better to show consistent performance across environments when compared to SOTA, fully supervised learning approaches when evaluated via Relative Change in Success (RCS).
translated by 谷歌翻译
The primary obstacle to developing technologies for low-resource languages is the lack of representative, usable data. In this paper, we report the deployment of technology-driven data collection methods for creating a corpus of more than 60,000 translations from Hindi to Gondi, a low-resource vulnerable language spoken by around 2.3 million tribal people in south and central India. During this process, we help expand information access in Gondi across 2 different dimensions (a) The creation of linguistic resources that can be used by the community, such as a dictionary, children's stories, Gondi translations from multiple sources and an Interactive Voice Response (IVR) based mass awareness platform; (b) Enabling its use in the digital domain by developing a Hindi-Gondi machine translation model, which is compressed by nearly 4 times to enable it's edge deployment on low-resource edge devices and in areas of little to no internet connectivity. We also present preliminary evaluations of utilizing the developed machine translation model to provide assistance to volunteers who are involved in collecting more data for the target language. Through these interventions, we not only created a refined and evaluated corpus of 26,240 Hindi-Gondi translations that was used for building the translation model but also engaged nearly 850 community members who can help take Gondi onto the internet.
translated by 谷歌翻译
Structural failures are often caused by catastrophic events such as earthquakes and winds. As a result, it is crucial to predict dynamic stress distributions during highly disruptive events in real time. Currently available high-fidelity methods, such as Finite Element Models (FEMs), suffer from their inherent high complexity. Therefore, to reduce computational cost while maintaining accuracy, a Physics Informed Neural Network (PINN), PINN-Stress model, is proposed to predict the entire sequence of stress distribution based on Finite Element simulations using a partial differential equation (PDE) solver. Using automatic differentiation, we embed a PDE into a deep neural network's loss function to incorporate information from measurements and PDEs. The PINN-Stress model can predict the sequence of stress distribution in almost real-time and can generalize better than the model without PINN.
translated by 谷歌翻译
Green Security Games with real-time information (GSG-I) add the real-time information about the agents' movement to the typical GSG formulation. Prior works on GSG-I have used deep reinforcement learning (DRL) to learn the best policy for the agent in such an environment without any need to store the huge number of state representations for GSG-I. However, the decision-making process of DRL methods is largely opaque, which results in a lack of trust in their predictions. To tackle this issue, we present an interpretable DRL method for GSG-I that generates visualization to explain the decisions taken by the DRL algorithm. We also show that this approach performs better and works well with a simpler training regimen compared to the existing method.
translated by 谷歌翻译
我们表明,具有“低稳定器复杂性”的量子状态可以有效地与HAAR随机区分开。具体而言,给定$ n $ qubit的纯状态$ | \ psi \ rangle $,我们给出了一种有效的算法,以区分$ | \ psi \ rangle $是(i)haar-random或(ii)具有稳定器保真度的状态至少$ \ frac {1} {k} $(即,具有一些稳定器状态的保真度至少$ \ frac {1} {k} $),保证就是其中之一。使用Black-box访问$ | \ psi \ rangle $,我们的算法使用$ o \!\ left(k^{12} \ log(1/\ delta)\ right)$ copies $ | \ psi \ rangle $和$ o \!\ left(n k^{12} \ log(1/\ delta)\ right)$ $时间以概率至少$ 1- \ delta $成功,并且随着访问状态准备统一,以$ | | \ psi \ rangle $(及其倒数),$ o \!\ left(k^{3} \ log(1/\ delta)\ right)$ queries和$ o \!\! log(1/\ delta)\ right)$时间就足够了。作为推论,我们证明$ \ omega(\ log(n))$ $ t $ - 盖特对于任何Clifford+$ t $ circile都是必不可少的,以准备计算上的pseudorandom Quantum Quantum state,这是一种首要的下限。
translated by 谷歌翻译
量子计算为某些问题提供了指数加速的潜力。但是,许多具有可证明加速的现有算法都需要当前不可用的耐故障量子计算机。我们提出了NISQ-TDA,这是第一个完全实现的量子机学习算法,其在任意经典(非手动)数据上具有可证明的指数加速,并且仅需要线性电路深度。我们报告了我们的NISQ-TDA算法的成功执行,该算法应用于在量子计算设备以及嘈杂的量子模拟器上运行的小数据集。我们从经验上证实,该算法对噪声是可靠的,并提供了目标深度和噪声水平,以实现现实世界中问题的近期,无耐受耐受性的量子优势。我们独特的数据加载投影方法是噪声鲁棒性的主要来源,引入了一种新的自我校正数据加载方法。
translated by 谷歌翻译